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ABSTRACT 

Let Xb X2 be subspaces of a completely regular space X. The bounded 
linear extension of C(X1 0 )(2) into C(X) are related to the projections 
of norm < 3 from C(X 0 + C(X2)onto C(X). 

1. Introduction. C(X) denotes the Banach space of all bounded continuous 
real-valued functions on a topological space X, with the supremum norm. If  B is 

a subspace of X, a simultaneous extension is a linear operator E from C(B) to 

C(X), such that for each f in C(B), Ef is an extension of f .  I f  R denotes the restric- 
tion operator of C(X) to C(B), then a simultaneous extension is a linear right 

inverse of R. 
When a bounded simultaneous extension exists, C(B) is isomorphic to the 

subspace EC(B) of C(X), and P = ER is a projection (all "projections" in this 
paper are linear and bounded) of C(X) onto this subspace. 

If  X is metric and B is closed in X, then there exists a simultaneous extension 
E of C(B) to C(X) with norm 1 [2]. In the general case a bounded simultaneous 
extension may fail to exist: Let X = fin (the Stone-Cech compactification of  the 

discrete sequence N), and B = f i N -  N. As proved in [1], C( f lN-  N) is not 
isomorphic to a direct factor of C(flN). 

Corson and Lindenstrauss [4], found recently, for every k > 1, a pair B c X 
of compact Hausdorff spaces, such that there is a simultaneous extension of C(B) 
to C(X) with norm k, but no one with smaller norm. 

Another simple relation between projections and simultaneous ,'extensions was 
observed by Dean [3]: Let Co(X, B) denote the subspace of  C(X) of functions 
vanishing on B. I f  E is a bounded simultaneous extension of C(B) to C(X), then 
I - ER is a projection of C(X) onto Co(X, B). If  R has a bounded (not necessarily 
linear) right inverse Q on C(B) (e.g. when B is closed and X is normal--by Tietze's 

theorem), the converse is also true: I f  P is such a projection, define E = Q - PQ. 
E does not depend on the choice of Q (if Q' is another right inverse of R, then 
(Q - PQ) - (Q' - PQ') = (Q - Q') - P(Q - Q') = 0), and is a bounded linear 

extension. 
In this paper we study a less immediate relation between projections and simul- 

taneous extensions: Suppose we have two pairs: B1 c X1, B2 c X2 and a homeo- 
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morphism h of BI onto B 2 . We can "paste"  the spaces X1 and X2 along the Bi by 
identifying all the points s in B 1 with the corresponding hs in B 2 ,  the quotient space 
X having the quotient topology. C(X) is naturally identified as a subspace of 
C(X1) ~ C(X2). The theorem relates projections of  C(XI)O)C(X2) onto C(X) 
to simultaneous extensions from C(B) to C(X), where B is the image of  the Bj 
under the quotient map. This is done for the case where the Bi are closed and 
nowhere dense, the Xr--completely regular, and there exist norm preserving 
extensions Qi (not necessarily linear) of C(Bj) to C(Xi) (RjQj is the identity on 
C,(B,)) (i = 1, 2). 

2. Tn~OREM. (In the conditions specified above) if P is a projection of 

ofC(B) toC(X), with IIEII <¢1 I -1)/(3- []Pl[). 
Proof. For f in C(B) define W~f as the restriction of P(0 @ Q2f) to Xl  (f l  @f2 

denotes the function which is f l  on X1 and f2 on X2). W~f is independent on the 
choice of  Q2--if Q~ is another extension, then P(0@ Q 2 f ) -  p(o@ Q~zf)= 
P [ 0 ~ ( Q 2 -  Q'2)f] = 01@(Q2- Q'2)f vanishes on X1. W1 is a linear operator 
from C(B) to C(X~); R~W~ is a linear operator from C(B) into itself. Define W2 
symmetrically. For each f in C(B) we have: 

(1) (RIW 1 + R2W2) f = R [P(QlfG 0) + P(0 ~) Q2f)]  = R(QlfO Q2f) =f. 

We shall give now some bounds for W~f: L e t f  be in C(B) with Ilfll = 1, and 
x in B. Let t > 0 be arbitrary. In the open set U = {s e X 1 - B;[ Qif(s)- f (x) ] < ~} 
choose a point t that satisfies also: [P(Qlf~)O)(t) - P(Ql f~  0)(x) [ < e. Take 
a function g in C(X) such that 0 < g < 1, g(t) = 1 and g vanishes out of  U. Con- 
sider the function F = ( - Q l f ~ Q 2 f ) +  [1 +f (x ) ]g  which belongs to 
C(Xx) ~ C(X2) and satisfies IF] < 1 + 

• (PF)(t) = ( Q l f ~  Q2f)(t) - 2P(Q~f@ 0)(t) + [1 + f ( x ) ]  g(t) = 

1 + 2f(x) - 2w~f(x) + [Q~f(t) - f ( x ) ]  + 2 [P(Q~f~) 0)(t) - P(Q~f@ 0) (x)] 

by the choice of t, we have: (1 + e)II P II > (PF)(t) > 1 + 2f(x) - 3~ - 2W~f(x), 
and as 8 was arbitrary, we can conclude (by symmetry) that 

(2) Wlf(x)~_f(x) - ½ ( I I P i l -  1) for all xeB; f~C(B)  with Ifl < 1 and 

i =  1,2. 

Combining (1) and (2), we get also the upper bounds: WJ(x) < ½( ]1P I1 - 1). 

A very similar method gives us the same upper bound for x e X i -  B: 
Take gEC(S) such that 0__< g=< 1, g(x)= 1 and g vanishes out of  
{s ~ XI - B; [ Q~f(s) - Qlf(x) l < e}. Consider the function F = ( - Q~f ~) Qzf) 
+ [1 +f(x)]g.  IF l < 1 + e and (PF)(x) = - (Qlff~Q2f)(x) + 2Wlf(x) + 
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+ 2g(x) = 1 + 2w, f(x), hence Wlf(x) <- ½( IIP i] - 1) whenever Ifl ---- 1. Using 
( - f )  instead off ,  we get: 

(3) ] Wif(x)]--< ½( I IP l i -  1) for all x ~ X ; f e C ( B )  with If] < 1; i =  1,2. 

~(-lIf 3llf I =1, sup {I ~f(x) I ; xeB}>__ sup {If(x) I ; x~B} -½ (11P II- 1) 
-- II P 11) (by (2)), combining these results we get: 

(4) o< ~(3-11PII)<IIR,w, II<IIw, II<~(IIPII-1)<I 

These bounds imply that RiWi are isomorphisms of C(B) into itself. We shall 
prove now that they are onto: Let f be in C(B). Consider the sequence: 
f0 = 0, and for n > 0, f~ = f , - i  + (R1W1)( f - fn-1) .  All the f ,  are evidently 
in R1W1C(B). We prove by induction that f - f ,  = (R2W2)~f--this is obvious 
for n = 0, and for n > 0: f - f ,  = ( f - f , - 1 )  - (RiW1) ( f - f n - : )  = (R2W2) 
( f - f , - l )  = (R2W2)*f by ((1)). This implies that the fn converge uniformly 
to f,  and as R1W1C(B) is closed, feR1WIC(B). By symmetry we have also 
R2W~C(B) = C(B). 

As RtW~ is one-to-one, Ri must be one-to-one on WiC(B), and this establishes 
a simultaneous extension El = R~-1 of C(B) to WiC(B) c C(Xi). 

F,f= E l f @ E 2 f i s  a simultaneous extension of C(B) to C(X), its norm is, 
by (4), not larger than (l] P II - 1)/(3 - [I P II)" Q .E .D.  

3. REMARK. 1) If  B is not empty, then necessarily II P I[ > 2. If IIP II = 2, 
then the extension E is norm preserving. 

2) If we have bounded simultaneous extensions El of  C(B) to C(XI), 
a projection P of norm 1 + 2 II ~1 II II E~ II/( II E, II ÷ II E211) exists: 
f o r f  ~ g in C(XI) @ C(X2), define: 

P(f@ g) = I f  + {11F,~ III(11F,, II + II F'2 II )} F'l (Rl f -  R2g)] 

• rg + {11 E, II/( II F,, 11 + 11F,2 II)) F,~ (R2g - Ri f )] .  

If we have I[ E1 H = 1, then [] P II = 1 + 2 II E~ II/(1 + II E~ II) hence I[ E2 II 
= ([I P I[ - 1)/(3 - l]P H)" This shows that the bound in the theorem is the 
best. 

3) The projection in 2) can be defined also when liE 2][ = 0% and 
we get a projection of  norm I + 2 H E I [ [ ,  I f  lIE 11[=1  (e.g. X 2 = f i N ,  
B 2 = fiN - N, X1 = [fiN - N] x ['0,1] and B1 = [fiN - N] x {0}), we get 
a projection of norm 3, but there is no bounded simultaneous extension of C(B) 
to C(X). "Reflecting" by an open and closed subset of fiN - N, we get an example 
where a projection of norm 3 exists, but there is no bounded simultaneous exten- 
sion of  C(B) to any of the C(X3. 
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4) In the symmetric case--when h can be extended to a homeomorphism H 
of  X 1 onto X2, we get easily a better extension: Wlf+ W2fH. Its norm is 
[I P 11- 1. Conversely, for an extension E, the projection defined in (2, has norm 

II lIE + 1 .  
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